
Reason	for	the	new	version	of	spi2dac	and	spi2adc	

Peter	Cheung,	8	December	2016	

Some	students	discovered	that	their	Verilog	design	using	the	spi2dac.v	module	
sometimes	give	errors	in	the	DAC	output.	For	example,	in	one	case,	the	sine	wave	
generated	is	correct	most	of	the	time,	but	occasionally	would	have	a	pulse	going	to	0	
(for	one	cycle)	and	then	recovers	afterwards.		However,	I	found	out	that	most	
students	do	not	have	any	problem,	and	their	design	works	perfectly	for	all	parts	of	
VERI.		This	apparent	“random”	error	is	due	to	a	poor	practice	on	my	part	in	designing		
the	spi2dac.v	and	spi2adc.v	modules.		These	have	now	been	replaced	by	a	new	
version	(version	3.0),	which	you	can	download	from	the	experiment	webpage.			

This	document	explains	the	problem	of	my	previous	version,	and	how	I	have	fixed	
the	problem	with	this	new	version	(version	3).		YOU	DO	NOT	NEED	TO	READ	or	
understand	this	document	in	order	to	get	your	design	working.		I	provide	this	
explanation	for	those	who	wish	to	know	more.		Those	who	don’t	want	to	know	the	
detail,	you	can	just	download	the	new	version	from	the	experiment	webpage	and	
used	it	by	adding	the	new	files	(i.e.	spi2dac_v3.v	and	spi2adc_v3.v)	into	your	project,	
replacing	the	original	version.		

What	did	I	do	that’s	wrong?	

The	original	design	of	spi2dac	
(as	explained	in	Lecture	12	
slide	8	onwards)	contains	
THREE	state	machines:			1)	the	
÷50	module	to	generate	an	
internal	1MHz	symmetrical	
clock	signal;	2)	the	load	
detector	FSM	to	detect	the	
rising	edge	of	the	load	signal;	
3)	the	spi	controller	FSM	
which	controls	the	generation	
of	the	serial	data	SDI	and	the	
serial	clock	SCK.		It	also	has	a	
shift	register	to	shift	data	out.	

Both	the	clock	divider	FSM	and	the	load	detector	FSM	are	triggered	by	the	50MHz	
clock.		However,	I	used	the	derived	1MHz	clock	signal	to	trigger	the	spi	controller	
and	to	clock	the	16-bit	parallel	to	serial	shift	register.		These	are	where	the	problem	
may	lie.			

Consider	the	block	diagram	of	spi2dac.v	above.		The	dac_start	signal	may	change	at	
the	same	time	(or	close	to)	the	rising	edge	of	the	1MHz	clock	signal.		This	could	then	
cause	a	setup	or	hold	time	violation	in	the	spi	controller	FSM	circuit	or	the	shift	
register.	

Why	does	this	only	happen	occasionally	and	not	all	the	time?	The	Quartus	software	
placement	and	routing	algorithms	use	non-deterministic	optimisation	methods	(e.g.	
simulated	annealing).		As	a	result,	each	time	you	run	the	Quartus	software,	the	
system	may	create	a	different	physical	design	for	the	FPGA.		The	logic	would	be	the	



same;	the	actual	locations	of	different	ALMs	and	registers	may	be	different.		This	
could	result	in	different	propagation	delays	for	the	signal	paths.	

How	to	fix	this?	

The	fix	is	very	simple.		I	should	have	followed	my	own	rule	–	the	entire	design	should	
be	synchronous	to	the	50MHz	system	clock	(CLOCK_50).		Therefore	I	did	three	things	
in	the	new	design:	1)	the	÷50	module	now	produce	two	outputs,	clk_1MHz	which	is	
the	symmetrical	1MHz	clock	gated	to	produce	DAC_SCK	signal,	and	tick	which	is	a	
1MHz	pulse	lasting	for	only	a	single	cycle	of	the	50MHz	clock	(and	will	be	used	as	an	
enable	signal	in	other	state	machines);	2)	I	make	sure	that	the	spi	controller	FSM	is	
synchronized	to	the	50MHz,	but	state	transition	only	occurs	when	tick	is	high;	3)	the	
shift	register	only	shift	the	data	once	every	1MHz	clock	cycle	(using	the	signal	tick	
again).	

Shown	here	is	the	Verilog	of	the	new	spi2dac	(file	is:	spi2dac_v3.v).		I	have	
highlighted	the	changes/additions	to	the	old	version.	



	


